MAPK signaling regulates endothelial cell assembly into networks and expression of MT1-MMP and MMP-2.

نویسندگان

  • Pamela J Boyd
  • Jennifer Doyle
  • Eric Gee
  • Shelley Pallan
  • Tara L Haas
چکیده

Microvascular endothelial cells embedded within three-dimensional (3D) type I collagen matrixes assemble into cellular networks, a process that requires the upregulation of membrane type 1 (MT1) matrix metalloproteinase (MMP) and MMP-2. The purpose of this study was to identify the signaling pathways responsible for the transcriptional activation of MT1-MMP and MMP-2 in endothelial cells in 3D collagen lattices. We hypothesized that the 3D type I collagen induction of MT1-MMP and MMP-2 is mediated by the mitogen-activated protein kinase family of enzymes. Here, we show that 3D type I collagen elicits a persistent increase in ERK1/2 and JNK activation and a decrease in p38 activation. Inhibition of ERK1/2 or JNK disrupted endothelial network formation in 3D type I collagen lattices, whereas inhibition of p38 promoted network formation. mRNA levels of both MT1-MMP and MMP-2 were attenuated by ERK1/2 inhibition but unaffected by either JNK or p38 inhibition. By contrast, expression of constitutively active MEK was sufficient to stimulate MMP-2 production in a monolayer of endothelial cells cultured on type I collagen. These results provide evidence that signaling through both ERK1/2 and JNK regulates endothelial assembly into cellular networks but that the ERK1/2 signaling cascade specifically regulates network formation and the production of both MT1-MMP and MMP-2 genes in response to 3D type I collagen.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

JNK and PI3K differentially regulate MMP-2 and MT1-MMP mRNA and protein in response to actin cytoskeleton reorganization in endothelial cells.

Increased production and activation of matrix metalloproteinase-2 (MMP-2) are critical events in skeletal muscle angiogenesis and are known to occur in response to mechanical stresses. We hypothesized that reorganization of the actin cytoskeleton would increase endothelial cell production and activation of MMP-2 and that this increase would require a MAPK-dependent signaling pathway in endothel...

متن کامل

MT1-MMP regulates VEGF-A expression through a complex with VEGFR-2 and Src.

Membrane-type-1 matrix metalloproteinase (MT1-MMP) is a zinc-dependent type-I transmembrane metalloproteinase involved in pericellular proteolysis, migration and invasion, with elevated levels correlating with a poor prognosis in cancer. MT1-MMP-mediated transcriptional regulation of genes in cancer cells can contribute to tumour growth, although this is poorly understood at a mechanistic level...

متن کامل

Membrane Type 1 Matrix Metalloproteinase Regulates Monocyte Migration and Collagen Destruction in Tuberculosis

Tuberculosis (TB) remains a global pandemic and drug resistance is rising. Multicellular granuloma formation is the pathological hallmark of Mycobacterium tuberculosis infection. The membrane type 1 matrix metalloproteinase (MT1-MMP or MMP-14) is a collagenase that is key in leukocyte migration and collagen destruction. In patients with TB, induced sputum MT1-MMP mRNA levels were increased 5.1-...

متن کامل

Differential Regulation of Membrane Type 1-Matrix Metalloproteinase Activity by ERK 1/2- and p38 MAPK-modulated Tissue Inhibitor of Metalloproteinases 2 Expression Controls Transforming Growth Factor- 1-induced Pericellular Collagenolysis*

Acquisition of matrix metalloproteinase-2 (MMP-2) activity is temporally associated with increased migration and invasiveness of cancer cells. ProMMP-2 activation requires multimolecular complex assembly involving proMMP-2, membrane type 1-MMP (MT1-MMP, MMP14), and tissue inhibitor of metalloproteinases-2 (TIMP2). Because transforming growth factor1 (TGF1) promotes tumor invasion in advanced sq...

متن کامل

Crosstalk between neovessels and mural cells directs the site-specific expression of MT1-MMP to endothelial tip cells.

The membrane-anchored matrix metalloproteinase MT1-MMP (also known as Mmp14) plays a key role in the angiogenic process, but the mechanisms underlying its spatiotemporal regulation in the in vivo setting have not been defined. Using whole-mount immunohistochemical analysis and the lacZ gene inserted into the Mmp14 gene, we demonstrate that MT1-MMP vascular expression in vivo is confined largely...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 288 3  شماره 

صفحات  -

تاریخ انتشار 2005